Thursday, March 31, 2011

Low Back Pain Clinical Management Guidelines - iPhone App Review | iMedicalApps

Low back pain is virtually an epidemic in the United States. In many surveys, it is listed in the top 3 most frequent patient complaints resulting in a visit to a physician. It also appears to be more prevalent in the United States than in other industrialized societies, with only a muddle of theories available explain this costly difference. For this reason, a systematic methodology of evaluating the patient with back pain is clearly important. This would help the primary care physician, usually the first evaluate the patient, who is quietly worried that she or he might miss an ominous but uncommon etiology such as metastatic cancer. Also from the public health perspective, this methodology would help prevent multiple, unnecessary and costly imaging studies. And, in fact, many detailed evidence-based recommendations have been published over the years, going as far back as 1994.

More ...

Tuesday, March 29, 2011

Romantic Rejection May Hurt Just Like Physical Pain - US News and World Report

Memories of devastating heartbreaks appear to trigger activity in the brain that's similar to when people suffer physical pain, new research suggests.

"This tells us how serious rejection can be sometimes," said study author Edward E. Smith, director of cognitive neuroscience at Columbia University. "When people are saying 'I really feel in pain about this breakup,' you don't want to trivialize it and dismiss it by saying 'It's all in your mind.'"

The finding could lead to more than a better understanding of the link between emotional and physical pain, Smith said. "Our ultimate goal is to see what kind of therapeutic approach might be useful in relieving the pain of rejection."

Previous research has shown a link between what Smith calls "socially induced pain" -- the kind you get from dealing with other people -- and physical pain. For the new study, Smith and colleagues looked at rejection specifically.

"From everyday experience, rejection seems to be one of the most painful things we experience," Smith said. "It seems the feelings of rejection can be sustained even longer than being angry."

But where do you find rejected people? In New York City, of course, where hundreds or even thousands of relationships must fall apart every day. The researchers advertised online and in newspapers in search of people whose romantic partners had broken up with them. In all cases, they hadn't wanted the breakups to happen.

Forty people, all of whom felt "intensely rejected," ultimately took part in the study. As the researchers scanned their brains, the participants were told to look at photos, including photos of their friends (they were directed to think positive thoughts about them), and photos of their exes (they were directed to think about their breakup).

The participants also underwent brain scans as they felt pain on their forearms similar to the feeling of holding a hot cup of coffee.

The findings appear in this week's online issue of the Proceedings of the National Academy of Sciences.

Several of the same areas of the brain became active when the participants felt either physical pain or emotional pain. In fact, the two types of pain seem to share more regions of the brain than previously thought, Smith noted.

What about other kinds of emotional pain? Do they have the same effect on the brain? Maybe not. Smith said rejection appears to be in a class by itself in terms of its similarity to physical pain.

Future research could examine how emotional pain due to rejection affects how people feel physical pain, said Robert C. Coghill, an associate professor in the department of neurobiology and anatomy at Wake Forest University School of Medicine. Would rejected people feel more pain than other people? And what about after they get reminded about their rejections by looking at pictures?

For now, one thing is clear: brain scan or no brain scan, rejection hurts.

Thursday, March 24, 2011

A life without pain is a life without smell - health - 23 March 2011 - New Scientist

A handful of people around the world have never known the meaning of physical pain – not because they live incredibly sheltered lives, but because their nerves lack a crucial ion channel that helps transmit signals between adjacent nerve cells. A new study reveals that our sense of smell depends on this same protein gate, establishing a previously unrecognised link between the perception of pain and scent.

Jan Weiss of the University of Saarland School of Medicine in Homburg, Germany, and his colleagues recruited three people who cannot feel pain because they have a rare condition known as congenital analgesia. Weiss wanted to know whether people with this disorder have difficulty with other senses.

The trio of participants – two of whom were siblings – could see and hear well and had never complained about a lousy sense of smell, but the researchers decided to put their noses to the test anyway. When the participants sniffed cotton wool pads soaked in balsamic vinegar, orange, mint, perfume and coffee, they failed to identify any of the odours. In contrast, nine healthy volunteers and the siblings' parents performed just fine, breathing deeply from the pleasant orange and mint scents and turning sharply away from the vinegar.

Weiss and his team already knew that people who cannot experience physical pain usually lack a sodium ion channel called Nav1.7 in the membranes of nerve cells in the dorsal root ganglion and in the ganglia that are part of the autonomic nervous system, and wondered whether this loss could also explain the smelling problems. To find out, they examined tissue samples taken from the nose and olfactory system of normal people during surgery. The examinations revealed Nav1.7 channels in the cell membranes of the neurons that stipple these tissues.

Knockout noses

Weiss bred mice that lacked Nav1.7 in their olfactory neurons and discovered that, although the neurons still produced electrical signals in response to odours, they no longer transferred the signals to other neurons as they typically would.

The behaviour of these "knockout" mice also implied that they could not smell. Mice are generally intrigued by the aromas of potential mates and of food, but when the researchers presented the knockout mice with the scents of male and female urine, peanut butter and milk, they showed no interest. The mice were similarly unfazed when researchers exposed them to a chemical that foxes secrete from their anal glands which usually sends rodents scurrying in the opposite direction. When the researchers separated mother knockout mice from their pups, the smell-impaired mums failed to corral their offspring – a behaviour that probably relies on smell.

Co-author Frank Zufall, also of the University of Saarland, says the connection between smell and pain was completely unexpected. "We don't know why these two systems use the same channel," Zufall says, "but it's possible this is a more general sodium ion channel for sensory systems. Earlier evidence has shown it's expressed in taste cells."

Joost Drenth of the Radboud University Nijmegen Medical Centre in the Netherlands says it is a very interesting paper and is likewise curious to find out how else Nav1.7 is involved in our sensory systems. Pain seems to be linked, at least anecdotally, to other senses: a blinding light, a deafening noise and spicy chilli pepper can all be painful.

Zufall adds that the discovery has important implications. Knowing that a particular ion channel is necessary for smell suggests that in the future we may be able to help people who have lost this sense. And because sodium ion channels are often targets for painkillers, it's helpful to know that they could also disrupt the sense of smell as an unintentional side effect.

Monday, March 21, 2011

Pain hurts Canadian economy, survey finds - Calgary Herald

Chronic pain is hitting Canadians where it hurts -the wallet, according to a survey released today.

One-third of all Canadians report taking sick days, reducing productivity, losing income or their jobs because of pain they experienced in the last three months, according to an Angus Reid national survey conducted for the Canadian Pain Society.

"Pain is costing Canada big-time in dollars," says Dr. Mary Lynch, the president of the Canadian Pain Society.

Individually, pain costs afflicted people approximately $14,744 each year, according to a National Health Population survey. Estimates for the direct health-care costs associated with pain have hit $6 billion per year and it's expected to hit $10 billion per year by 2025, says the Canadian Pain Society.

Pain afflicted young people more than any other age group surveyed, with 23 per cent of those between 18 and 34 years old reported missing days of work due to pain. Another one in five said they were less productive because of pain and 15 per cent said they lost income thanks to their afflictions -significantly higher than the national average of 11 per cent.

"It is happening on a grand scale in a youthful population," said Lynch. "This is prime workforce age group."

Sandra Gartz of Kitchener, Ont., was in those prime working years when pain robbed her of her nursing job. She was 30 years old in 1985 when a workplace injury took her off the job for 20 weeks. Still, she fought through the pain of fibromyalgia and went back to work despite chronic affliction.

"It's tiring fighting pain all day and then working, too,"she said. "It's like you have two full-time jobs, pain is a full-time job."

But in 1995, she had another fall and it took her out for good.

"I was suicidal,"she said.

All of a sudden, her family, which had grown to include two small children, had no money -not for food, the mortgage payment or the car payment. The family applied for welfare, but, luckily, Gartz's husband found a job by the time the first cheque came in. The family's income levels have never fully recovered though, Gartz said.

"If I was working, I'd be getting $60,000 or $70,000 a year," she said. "I get $36,000 a year between my two pensions."

The survey was conducted from March 4 to 7 among 1,108 randomly selected Canadian adults who are Angus Reid Forum panellists. The margin of error was 2.9 percentage points 19 times out of 20 and has been statistically weighted according to census data.

Saturday, March 19, 2011

Health Special: Chronic Pain - TIME

Pain is the human bodyguard, the cop on the beat racing to the scene, sirens wailing, shutting down traffic. You've been cut, burned, broken: pay attention, stop the bleeding, apply heat, apply cold, do something. It's one of life's most primitive mechanisms, by which even the simplest creature, if it has anything like a central nervous system, learns to avoid danger, stay out of bad neighborhoods, hunker down to give itself time to heal. Pain is protective. Don't do that, it commands — and the command is usually a wise one. So this sensation we seek most to avoid is in fact one of the most essential ones for our survival.

But what happens when pain goes rogue, when it sends off false alarms so that all the sirens keep sounding, all the cops keep coming, all the hurts keep hurting? If even benign stimuli get distilled down to a single, primal Ouch!, then pain ceases to be adaptive. Rather than saving lives, it wrecks them. Rather than helping you get well or stay safe, it becomes an illness in itself. The result: persistent, unceasing torment. (Read about kids and concussions.)

That's the situation that more than 76 million Americans face. Their pain can last for days or even weeks at a time, then dissipate, only to return. The problem may be caused by something as common as arthritis, an inflammation of the joints that makes them throb with discomfort. The issue could be fibromyalgia, in which a breakdown of pain signals leaves joints, muscles and tissues hypersensitive. It may be a nerve disorder known as neuropathy, triggered by diseases as diverse as cancer and diabetes. It may be that the cause is unidentifiable. Many cases of chronic pain remain unexplained, but they hurt all the same.

There's no telling who the victims of chronic pain will be, but there are ways of determining who is at highest risk. About 10% of people who have surgery, even relatively routine procedures such as knee or back operations, for example, will never be the same again, suffering a lifetime of generalized pain that may start from the incision site but is eventually diffused to other parts of the body. Around 20% of cancer patients will continue to feel pain two years after the surgery or chemotherapy that may have saved their lives. For all of them, pain is not merely a symptom but a disease in itself, one that doctors have only recently come to recognize. (See TIME's special report "How to Live 100 Years.")

But recognizing a disease is only a prelude to treating it, and doctors admit that while they're pretty good at relieving the acute pain that occurs immediately after surgery or an injury, they are usually stymied by the chronic kind. The most common complaint doctors hear from their patients is about pain that will not quit, and more than 80% of those people never receive treatment — or at least not an effective one. About a decade ago, physicians took the first step toward acknowledging the prevalence of pain and their inadequate ability to address it by including pain assessment as a vital sign along with blood pressure, respiratory rate, heart rate and temperature. "As a clinician, I'm frustrated, and I'm sure many patients are, because we do a very poor job in terms of providing relief for chronic pain," says David Borsook of the McLean Hospital and Harvard Medical School.

To address that frustration, this summer, an expert panel convened by the Institute of Medicine — the independent scientific advisory arm of the National Academies — will release a report on the latest advances in understanding chronic pain and highlight the need for an all-encompassing approach that treats it as a disease of both brain and body. A strategy that lays bare the multitude of body systems involved in maintaining a world of chronic hurt also presents a multitude of treatment opportunities for science to exploit.

Brain-imaging studies and research in genetic and molecular biology, for example, suggest that a brain in chronic pain looks and acts differently from a normal brain and that the phenomenon can even run both ways: haywire circuits cause the brain to register persistent pain, which in turn leads to changes — perhaps permanent — in the way the brain and body work. All this suggests entirely new routes toward eliminating pain or at least managing it better.

"There has been a shift in thinking away from pain as only a sensory experience," says Dr. Clifford Woolf, a neurologist at Children's Hospital Boston. "Rather than targeting the suppression of pain as a symptom, the best treatment now has to be targeted at preventing pain as a disease. That insight really changes the way we understand pain."

Read Dr. Mehmet Oz's column about concussions.

Unpacking the Hurt
What is pain? Defining something as varied and complex as pain continues to be a challenge for doctors, even as they try to improve their ability to treat it. While most experts agree it is a phenomenon of the nervous system, only in recent years have they accepted that pain isn't always traceable to a physical source. Patients with amputated limbs who still feel discomfort in the missing appendage are still hurting, for example, since their brain is registering signals, however distorted, of the sensation. The subjective experience of pain is also nearly unlimited in its variety. Pain can come and go, a bothersome reminder of a past injury; it can be dull and achy or sharp and shooting; it can be concentrated in one joint or muscle or seem to radiate throughout the body. With chronic pain, the problem is compounded, since in most cases there's no proximate cause or injury to treat. What do you do about a surgical site that healed long ago yet still causes agony? What do you do about whole-body pain that has never stopped since a round of chemo far in the past?

Part of the answer may lie in the chemicals that bathe the brain and promote communication among nerve cells. Most studies of chronic pain involve people with fibromyalgia, a condition involving abnormal pain responses that generally affects women. Chronic fatigue syndrome and back disorders can also cause constant pain, and studies of patients with all these conditions have found these individuals have more-active nerve responses, which amplify pain receptors throughout the body. This can set off the pain cascade with hair-trigger sensitivity. (See a special report on women and health.)

Fibromyalgia patients are a case in point. They often report deep aches as well as shooting discomfort from their joints, even if they don't show signs of inflammation there. What they frequently do have, however, are lower levels of endorphins compared with those who don't suffer from the condition. This may make them more sensitive to pain. Endorphins are the body's natural morphine, and they dull pain by binding to nerve-cell receptors reserved for opiates. Also linked to mood, endorphins can contribute to feelings of euphoria and satisfaction, another mechanism by which they may divert the brain from pain.

And it's not just chemical compounds but neural circuits that may be altered in chronic-pain sufferers. For example, an adaptive mechanism in which severe pain in one area of the body inhibits pain in another is impaired among women with fibromyalgia. Normally, this system works as a check on the amount of pain the brain can handle; if your arm is sore and someone steps hard on your toe, your arm will temporarily feel better as all of your brain's pain attention is focused on the new insult. In chronic-pain patients, this mechanism is faulty or nonexistent.(See Healthland's five new rules for good health in 2011.)

Genes, too, almost certainly play a role in the response to pain. Inherited differences in the number, density and type of receptors that detect pain, as well as in the body's ability to control it, could help explain why some people feel pain more acutely than others do, as well as why one patient recovers from a knee operation without lasting effects while another never does.

But unraveling the DNA-based component of pain takes more than simply comparing the genomes of chronic-pain sufferers with those of other people and isolating the differences in their genes. That would yield an overwhelming number of potential leads mixed with a good dose of genetic red herrings. So Woolf, for one, has started small, isolating some intriguing possibilities in a species that's easier to study: the fruit fly. He has already found some painregulating genes in that simple model, and if they work the same way in humans, those genes could be manipulated with new drugs to tackle pain in a personalized, targeted way.

Such strategies may be novel and in many cases purely theoretical, but they build on a very basic understanding of human anatomy and function. The body's natural painkilling system — the opioids and analgesics we all produce — are the basis for our most powerful painkillers, including nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen and naproxen. All of them, natural and synthetic, work by stopping pain signals from speeding along neural highways into the spinal cord and brain. But there may be a more direct way to exploit this pain-dampening system than with drugs that diffuse throughout the entire body.

Read "Why Abdominal Pain Is Such a Headache for ER Doctors."

That's what Dr. David Fink, director of neurology at the University of Michigan, is hoping to show with a gene-therapy study, in which he will inject chronic-pain sufferers with genes coding for natural painkillers, hoping to boost their bodies' levels of those analgesic chemicals. Enkephalins are a type of opiate that the body produces to dull pain sensations, but in cases of chronic pain, these agents appear not to flow in sufficient quantities. So in the first study of its kind, Fink's team is testing whether using a viral vector to inject cancer patients with the gene associated with enkephalins can boost levels of the opiate and address the subjects' pain. "If we could deliver the gene that makes enkephalins," he says, "they could be released from cells directly into the nervous system and potentially reduce pain in a more targeted fashion." As appealing and potent as that strategy is, tapping into the opiate system is also fraught with danger. The analgesic circuits are intricately intertwined with the body's reward-andreinforcement network, meaning that activating it could lead to addictive behaviors. That's what makes prescription opioids and other painkillers so habit-forming.

So identifying other genes — those that regulate the addiction circuits — and finding ways to bypass them could be another avenue to treating chronic pain more effectively with existing opiates. At Stanford University Medical Center, researchers led by Martin Angst, a professor of anesthesia, are studying sets of twins in which one displays a stronger liking for painkilling drugs than the other but both experience the analgesic benefits. The idea is to try to isolate the protein markers, perhaps in the blood, produced by the genes that help one twin resist the habit-forming nature of the drugs. Spotting the protein could help doctors identify those more vulnerable to addiction. "As much as we agree that we need to look for novel pain treatments, we understand narcotics pretty well," Angst says. "And if we had a genetic thumbprint for how likely you are to suffer from drug abuse, how convenient that would be." (See the top 10 medical breakthroughs of 2010.)

Training the Brain
Still, even if such approaches produce new screens for identifying the best responders to painkillers, they won't likely be enough to address the universe of chronic pain with its widely diverse causes. To achieve that, say some researchers, we need to do more than simply muffle the nervous system's false alarms so the brain and body don't hear them. Instead, we have to retrain the brain and find a way to shut that alarm down.

That's where brain imaging — the powerful technology that allows researchers to view the brain at work, nearly in real time — becomes indispensable. What if, for example, pictures of the brain could be used to help people "think" themselves out of pain?

The idea borrows heavily from biofeedback, in which patients use computer screens or other instruments to monitor bodily functions like heart rate or respiration, then dial those functions up or down with just the power of their mind. For pain patients, Dr. Sean Mackey, a professor of anesthesia and pain management at Stanford, has been studying ways to do the same thing with the aid of functional magnetic resonance images (fMRI), which document active regions of the brain at work. "We want to turn the tool that we use to open windows into people's brains and instead use it as a tool to allow people to control their brains," he says. (See TIME's health and medicine covers.)

In Mackey's study, healthy subjects in an fMRI machine were given live access to an image of their brain's activity in a region known as the anterior cingulate cortex — a key regulator of pain signals. Using a heat probe on the arm to cause pain, Mackey and his team asked the volunteers to dial down their level of discomfort when the temperature reached unbearable levels and to dial up their pain sensations when the probe wasn't generating enough heat. They did this not by actually changing the temperature of the probe — that was under the control of the researchers. Rather, they actively refocused their brains either away from or to painful thoughts, depending on the effect they were trying to achieve. To decrease their painful feelings, for example, the subjects were told to distract themselves with thoughts of more-pleasant experiences or events.

Surprisingly, it worked. After the training, the subjects improved their ability to control pain intensity by 23%. And in the ultimate test, when Mackey next trained patients with chronic pain, they reported a 64% reduction in their sensation of pain.

If the results hold, ultimately, Mackey says, retraining the brain to control the activation of pain pathways may become a powerful way of controlling pain without the dangers of addiction. "The idea is that we can specifically target particular brain regions and processes," he says. "The problem with pain pills is that they go through the entire body and manipulate regions of the brain that we don't want to manipulate."

Retraining the brain has the added advantage of exploiting a part of the pain pathway that so far hasn't been targeted much by drugmakers: its inhibitory arm. While painkilling drugs attempt to dampen already activated pain signals, says Mackey, retraining the brain involves "trying to beef up the muscles that turn down the overall pain experience." (See the unusual mirror therapy that's helping amputees.)

That idea speaks to the brain's plasticity — the way it changes and adapts to new situations. A boxer doesn't come into the world unable to feel the pain of a punch in the nose; indeed, he feels it as acutely as anyone else. Over time, however, his pain threshold adjusts so that a punch simply hurts less. Such changes may become self-perpetuating, both for better and for worse.

This kind of resculpting of the brain is leading scientists to explore other ways to rewire the connections that lead to chronic misfiring. David Yeomans, director of pain research at Stanford, was inspired by a psychiatric treatment for bipolar disorder in which magnetic stimulation shuffles nerve networks back to a near normal state. He wondered if the same technique could be applied to pain. And indeed, in early studies, he found that concentrating magnetic fields to target deep-seated pain centers can also relieve symptoms in patients who do not respond to any other therapy.

That's important, since chronic pain may be self-perpetuating, and the sooner pain can be addressed, the less likely it will be to cause persistent and relentless discomfort. "There is intriguing evidence suggesting that chronic pain in osteoarthritis, for example, itself may be causing enhanced damage to joints," says Mackey. "The altered brain is causing changes in the spinal cord that are having an effect on the joints and accelerating damage." The more pain the brain feels, the more damage that does to the body, giving it a physical reason to feel still more. (Read "Less Pain, More Gain.")

The Talking Cure
A final, wonderfully low-tech piece of the pain puzzle involves the psychological, social and behavioral factors at play. Whether or not postsurgical pain becomes chronic certainly has a lot to do with a person's genetic sensitivity to activating pain pathways, but it may also depend in part on temperament and mental state. Because brain chemicals that regulate mood and emotion, such as serotonin and norepinephrine, are closely linked to those that govern crisis response — including pain — it makes intuitive sense that their functions would be intertwined, and doctors see evidence of that all the time.

"Chronic pain really is a disease of the central nervous system," says Borsook. "As such, it is a disease that affects the sensory, emotional, motivational, cognitive and modulatory pathways. And the more we understand in particular the emotional pathways, the more we begin to understand that the traditional way we approach patients in pain may need to be revised."

Borsook is convinced that psychiatrists, who have a good understanding of the brain changes caused by mental illness, can provide insights into how best to exploit them. Patients with depression or anxiety, for example, often report a higher incidence of chronic pain, and their discomfort rises as their depression worsens. In addition, the opioid-based response to pain loops in the same reward and motivational systems that reinforce behaviors like addiction. Treat the depression and you may break the entire pathological cycle.

New research into mental illness, genetics and molecular biology is giving researchers and patients new hope that pain may not have to remain so intractable and untreatable. And rethinking chronic pain as a disease, as a normally adaptive process gone awry instead of as a symptom, may be the key to finding safer and more effective ways of interrupting the hurt.,28757,2053382,00.html

Pursuing the pain problem: Rochester spearheads FDA initiative to speed development of new therapies | Analgesic Clinical Trial Innovations, Opportunities, and Networks

Pain is the most common symptom leading patients to see a physician in the United States, yet the most widely prescribed medications – opioids and non-steroidal anti-inflammatory drugs (NSAIDS) – have major drawbacks, including the potential for misuse and abuse and adverse effects that limit long-term use. While scientists have made great strides in understanding the physical and chemical processes that occur when people feel pain, new treatments with improved safety and effectiveness are still needed for the more than 76 million Americans with acute and chronic pain.

In response to this huge public health need, the U.S. Food and Drug Administration recently selected the University of Rochester Medical Center to lead a new initiative to accelerate the identification of improved pain treatments. Rochester was awarded a $1 million contract to launch the program – a partnership where public and private organizations, including professional societies, patient advocacy groups, industry, and government, will collaborate on multiple projects to help bring more treatment options to patients.

"Today, the state of pain treatment is in crisis, as we continue to rely heavily on medications that have been around for thousands of years (opioids and NSAIDS) and that leave much to be desired in terms of safety and effectiveness," said Dennis Turk, Ph.D., the John and Emma Bonica Professor of Anesthesiology & Pain Research at the University of Washington, who will work closely with researchers at Rochester on the new initiative. 

Why the major lag in new treatments for pain? The problem is not a lack of potential medications: A multitude of studies testing experimental therapies have been conducted or are underway. The problem is that many trials fail, whether for low back pain, osteoarthritis, neuropathic pain, or a host of other pain conditions, because they are unable to show a new medication provides meaningfully greater pain relief than placebo.

Although some drugs under investigation may have little or no effectiveness when it comes to minimizing pain, researchers believe other factors may play a role in the disappointing results of many recent studies: The way pain clinical trials are designed and carried out may hinder or limit their ability to distinguish truly effective pain treatments from less effective treatments or placebo.

"Clinical trials come at a great cost, take a substantial amount of time to carry out, and require significant effort from the patients who participate," said Robert Dworkin, Ph.D., professor in the Department of Anesthesiology and the Center for Human Experimental Therapeutics at the University of Rochester Medical Center and director of the new initiative. "We need to understand why so many pain studies have failed to show efficacy so we can make changes that will increase the likelihood that future studies will identify new treatment options for patients who are suffering from pain."

The partnership, known as Analgesic Clinical Trial Innovations, Opportunities, and Networks (ACTION), will analyze a wide range of clinical trials of treatments for acute and chronic pain, looking specifically at the approach and procedures used in each trial. Researchers hope to identify problems or gaps in trial design and implementation, and find ways to bridge these gaps to speed the development of new safe and effective medications.

"An effective therapy may fail to show significant pain relief in a study because the optimal patients were not enrolled or the research design and methods had important limitations," according to Dworkin. "There is a whole range of things that could lead to falsely negative study results, and our goal is to determine what they are, and what we can do to modify them in future studies."

Turk, the associate director of the new initiative who will work closely with Dworkin to analyze the design of past and present pain trials added, "We really need to make an effort to improve the studies we are conducting to expedite the development of new safe and effective treatments. As the population continues to age, pain is only going to become a larger and costlier problem."

In addition to the University of Rochester Medical Center, researchers and physicians from the American Academy of Neurology, American Academy of Pain Medicine, American Pain Society, American Society of Anesthesiologists, International Association for the Study of Pain, and Outcome Measures in Rheumatology, as well as representatives from the National Institutes of Health, the U.S. Department of Veterans Affairs, patient advocacy organizations, and pharmaceutical companies such as Endo, Johnson & Johnson, NeurogesX, and Pfizer are participating in the initiative.

"One of the issues with pain is that it cuts across so many specialties – anesthesiologists, rheumatologists, emergency department physicians, and others are all interested in pain – and the result is that pain doesn't really have a single home," said Denham Ward, M.D., Ph.D., chair of the Department of Anesthesiology at the University of Rochester Medical Center. "This initiative is crucial because it is bringing together all the key players in pain research and treatment, and the University of Rochester is proud to be leading this charge."


The Analgesic Clinical Trial Innovations, Opportunities, and Networks (ACTION) public-private partnership is aligned with the Food and Drug Administration's (FDA) recently launched Initiative for the Advancement of Regulatory Science. For the benefit of the public health, ACTION is designed to streamline the discovery and development process for new analgesic medications and to more generally accelerate the development of pain treatments with improved efficacy and safety. This multi-year, multi-phase initiative will initiate and foster strategic collaborations among a broad spectrum of stakeholders — including, but not limited to, academia, industry, professional organizations, patient advocacy groups, foundations, philanthropic organizations, and other government agencies — with the well-defined goal of sharing data, best practices, and innovative thinking.

Under the auspices of ACTION, it is anticipated that stakeholders will leverage their resources (e.g., data, scientific and clinical expertise, infrastructure, and financial support) to foster dialogue and develop specific projects that will advance the understanding and development of analgesic treatments so that improved interventions can be identified and made available in an expedited and efficient manner.

Key objectives include:

  • Establishing relationships with key stakeholders, industry, professional organizations, academia, and government agencies;
  • Coordinating scientific workshops with experts in the fields of anesthesiology, neurology, rheumatology, pain medicine and other specialties involved in the treatment of pain;
  • Initiating and supporting a series of research projects and other activities; and
  • Conducting in-depth and wide-ranging data analyses of analgesic clinical trial data to determine the effects of specific research designs and methods of analysis.

Thursday, March 17, 2011

Opioids May Play a Role in Congenital Problems -

Women who take codeine, oxycodone and other opioid pain drugs early in pregnancy may be exposing their babies to a higher risk of birth defects, a new government study suggests.

Though the overall numbers were small, babies whose mothers took opioids were considerably more likely than others to have congenital problems, including a potentially fatal syndrome in which the left part of the heart does not develop completely; spina bifida, in which the backbone and spinal canal do not close; and gastroschisis, in which the intestines stick out of the body.

The study, from the Centers for Disease Control and Prevention, was one of the largest to examine the effects of opioid use during pregnancy. It appeared last month in The American Journal of Obstetrics & Gynecology.

It used data from the National Birth Defects Prevention Study about mothers in 10 states who gave birth from 1997 to 2005. Information was drawn from hourlong computer-assisted telephone interviews with the mothers.

Of 17,449 mothers whose babies had a birth defect, 454, or 2.6 percent, reported treatment with opioid analgesics a month before pregnancy or during the three months after conception. In the comparison group of 6,701 women, the rate of opioid treatment was 2.0 percent.

"Opioids and their receptors act as growth regulators during embryologic development, which may explain our findings," said Cheryl S. Broussard, the paper's lead author.

Wednesday, March 16, 2011

NYTimes: Treating Chronic Pain and Managing the Bills

PATIENT MONEY: Treating Chronic Pain and Managing the Bills

People with chronic pain often discover that getting the care they need at an affordable price can be challenging. Here are some suggestions that may help.